Note: Excluding Programs.

20UDSM202	CORE IV: DATA STRUCTURES	SEMESTER - II
i		

COURSE OBJECTIVES:

The course aims to

- Know the fundamental concepts of Data Structures.
- Develop applications using algorithms.

Credits:	3	Total Ho	ours: 50
UNIT	CONTENTS	HRS	СО
I	Introduction to Data Structures: Introduction-Types of Data Structures-Abstract Data Type- Time and Space Complexity-Big-Oh Notation. Arrays: Introduction- Declaration of Arrays-Accessing Array Elements- Storing Values in Arrays- Calculating the Length of an Array -Operations on Arrays -Two-dimensional Arrays-Multi- dimensional Arrays.	10	CO1
II	Linked Lists: Introduction - Linked List Versus Arrays - Memory Allocation and De-Allocation for a Linked List - Singly Linked List- Polynomial Representation- Circular Linked List- Doubly Linked List.	10	CO2
III	Stacks and Queues: Stacks- Array Representation of Stacks-Operations on a Stack- Linked Representation of Stack-Operations on a Linked Stack- Infix, Postfix and Prefix Notation-Evaluation of an Infix Expression- Convert Infix Expression to prefix Expression-Applications of stack.Queues: Array Representation of Queues- Circular Queue- Linked Representation of Queue- Operation on a Queue- Deque - Priority Queues - Multiple Queues.	10	CO3
IV	Trees: Binary Trees-Expression Trees- Traversing of a Binary Tree. Efficient Binary Trees: Binary search Trees- Operations on	10	CO4

	Binary Search Trees. Graphs: Introduction- Representation of				
	Graphs-Graph traversal Algorithms.				
	Graphs: Shortest Path Algorithms- Minimum Spanning Tree-				
V	Prim's Algorithm- Kruskal's Algorithm- Dijkstra's Algorithm-		CO5		
	Applications of Graphs. Sorting: Introduction- Bubble Sort-	10 CO5			
	Insertion Sort- Selection Sort- Merge Sort- Quick Sort- Heap Sort.				
TEXTBO	OK:	ı			
1	ReemaThareja.2012. Data Structures Using C. [First Edition]. Oxford University				
1	Press, New Delhi.				
REFERE	NCE BOOKS:				
1	A.K.Sharma. 2011. Data Structures Using C. [Second Edition]. BPB				
1	Publications, New Delhi				
2	Seymour Lipschutz. 2010. Data Structures with C. [First Edition]. McGraw Hill,				
2	International Editions, Schaum's Outline Series, New Delhi.				
3	R.S.Salaria. Data Structures and Algorithms Using C. [Fifth Edition]. Khanna				
3	Publishing, New Delhi. Paperback - 2018				
	G.A.V.Pai. 2008. Data Structures and Algorithms: Concepts, Techniques and				
4	Applications. [First Edition]. McGraw Hill, International Editions, New Delhi.				
	Paperback – 1 Jul 2017				
WEB RE	FERENCES:				
1.	https://www.geeksforgeeks.org/data-structures/				
2.	https://www.edx.org/course/data-structures-fundamentals				
3.	https://www.studytonight.com/data-structures/introduction-to-data-structures				

COURSE OUTCOMES (CO):

After completion of the course, the students will be able to:

Attain the knowledge of linear and non-linear data structures and analyze the
efficiency of the algorithms.
Handle operations like searching, insertion, deletion, traversing mechanism on
linked list.
Understand the stack and queue with its applications.
* **
Demonstrate different methods for traversing trees.
Demonstrate knowledge of various sorting and searching techniques.

MAPPING:

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	M	Н	M	Н
CO2	M	Н	Н	Н	Н
CO3	M	Н	Н	Н	Н
CO4	M	Н	Н	Н	Н
CO5	Н	Н	Н	Н	Н

H-High; M-Medium; L-Low